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Abstract

The recent work of Delabaere and Trinh (Delabaere E and Trinh D T 2000 J.
Phys. A: Math. Gen. 33 8771) discovered the existence of P7 symmetry
breaking, complex energy, L solutions for the one-dimensional Hamiltonian,
P? +iX? +ia X, in the asymptotic limit @ — —oo. Their asymptotic analysis
produced questionable results for moderate values of &. We can easily confirm
the existence of P7 symmetry breaking solutions by explicitly computing the
low-lying states for |o| < O(10). Our analysis makes use of the multiscale
reference function (MRF) approach, developed by Tymczak ef al (Tymczak CJ,
Japaridze G S, Handy C R and Wang Xiao-Qian 1998a Phys. Rev. Lett. 80
3678; 1998b Phys. Rev. A 58 2708). The MRF results can be validated by
comparing them with the converging eigenenergy bounds generated through the
eigenvalue moment method, as recently argued by Handy (2001a, b). Given
the reliability of the MRF analysis, its fast numerical implementation, high
accuracy and theoretical simplicity, the present formalism defines an effective
and efficient procedure for analysing many related problems that have appeared
in the recent literature.

PACS numbers: 0230H, 0365, 0365G

1. Introduction

There has been much interest, recently, in understanding the symmetry breaking mechanism
for PT -invariant Hamiltonians of the type P24+ ZJJ:O C;(iX)’/. The mathematical interest
in these systems originated from a conjecture by Bessis, and WKB analysis confirmation by
Bender and Boettcher (1998), that the class of potentials of the form V (x) = (iX)" only allow
for PT -invariant solutions, and thus can only have real discrete spectra. The recent literature
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testifies to the great interest in these problems, as can be found in the references cited by Bender
et al (2001) and Mezincescu (2000, 2001).

An important work establishing that P7 symmetry breaking systems do exist was the
recent study by Delabaere and Trinh (2000) which used asymptotic methods to analyse the
Hamiltonian H, = P? +iX? + iaX. Their analysis has shown the existence of symmetry
breaking solutions for large o values; however, for moderate values, their results were near the
limits of their analytical validity. Despite this, they made certain questionable predictions for
moderate ¢ values.

Our immediate objective is to check the validity of the Delabaere and Trinh study, by
explicitly computing the low-lying complex (and real) eigenenergies for moderate « values.
We do this in two ways. The first makes use of the very efficient multiscale reference
function (MRF) formalism of Tymczak er al (1998a, b). The results of this eigenenergy
estimation analysis are then confirmed through application of arecently developed eigenenergy
bounding theory proposed by Handy (2001a, b), which can generate converging bounds to
the complex eigenenergies. This bounding approach, referred to as the eigenvalue moment
method (EMM), is exact, although numerically slower in its implementation than the MRF
procedure.

As a footnote to the above, we emphasize that the EMM theory generates an infinite
hierarchy of closed, finite-dimensional, algebraic, eigenenergy constraints. These are then
solved, numerically. In this regard, the EMM procedure is very different from other numerical
schemes, such as numerical integration, which are intrinsically of an approximating nature,
and cannot provide any fundamental theoretical insight into the underlying physical processes.
The algebraic constraints generated through the EMM formalism can provide such insight;
although such analysis has not been attempted to date. However, for the immediate purposes
of this paper, we solely defer to EMM in order to check the validity of the MRF results.

In this paper, we provide the essentials of the MRF theoretical structure, as applied to the
H, Hamiltonian. The EMM theory is not discussed. Only the numerical bounds are quoted in
the tables. This paper validates the relevance of MRF theory in the computation of complex
eigenenergies, for the class of problems referenced above.

Both the MRF and EMM methods are dependent on a moments’ representation for the
given system. This in turn is readily realizable for any (multi-dimensional) rational fraction
potential.

Any moment-based analysis is inherently multiscale in nature. That is, as the number of
moments used increases, one is probing the system at successively smaller scales. Consistent
with this, the MRF basis representation, particularly within configuration space, has important
ties with (complex) turning point quantization (Handy et a/ (2000)), and wavelet analysis
(Handy and Brooks (2001)).

We outline the basic MRF theory and its implementation, in the next section. The last
section contains a detailed enumeration, and illustration, of the MRF results, which make
precise the qualitative spectral structure conjectured by Delabaere and Trinh (2000).

2. The MRF representation

2.1. The moment equation

The starting point for the MRF analysis is the transformation of the Schrodinger equation
into the Fourier representation, assuming that one is working with the physical, L2, solutions.
Thus, for the configuration space Schrodinger equation studied by Delabaere and Trinh (2000)

—32W(x) + (ix® +iax) ¥ (x) = EW(x) (D
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its Fourier transform counterpart is (i.e. x — 19, dy — ik)
W (k) + (9 — ad) W (k) = EV (k) )

where

U(k) = x e R (x). 3)

b / d
V21 oo

Itis important to note that, for the physical solutions, a simple application of WKB analysis
(Bender and Boettcher (1998)) tells us that the asymptotic behaviour of the configuration space
representation yields an entire Fourier transform. Because of this, the k-power series expansion
is absolutely convergent, and defined in terms of the power moments:

. 1 X L Wy
V(k) = — E —ik)? — 4
“ «/Epzo( ) p! @
where
Wy E/ dx x?W(x) ©)

define the Hamburger power moments.

We can generate the recursion relation for the (), from the standard power series expansion
methods for linear differential equations (Bender and Orszag (1978)). Alternatively, we can
apply [ jzz dx x? to both sides of equation (1), combined with integration by parts, and obtain
the necessary moment equation:

Mpes = —Qpps —1Epu, —ip(p — Dpp—2 (6)
for p > 0. This corresponds to a homogeneous, linear, finite difference equation, of effective
order 1 + mg = 3, since specification of the independent moments {wg, (1, 42}, plus the
(complex) energy parameter, E, generates all of the remaining moments. The independent
moments are referred to as the missing moments.

The linear dependence of the moments, on the missing moments, can be expressed through
the relation

ms
mp =y M, (E)n (7
=0
where the energy-dependent coefficients satisfy the moment equation, with respect to the
p-index, as well as the initial conditions My, ¢, = 8¢, ¢,, for 0 < €1, £ < ms.

2.2. Defining an analytic basis in the Fourier space

The physical solutions in the Fourier representation must also be L2. One would like to find
an appropriate basis into which to transform the Fourier power series expansion

Mp 1 &
(i )"’ = —=)_a;B;k). ®)
N Z o ; JRj
The easiest choice, leadmg toa rapld, analytic generation of the a; coefficients, is to take
B;(k) = (—ik) R(k) ©))
where R is some arbitrary ‘reference’ function yielding a complete (if not orthogonal) basis.

Thus, if —) is analytlc then one can generate the a; by expanding \;Eg In particular, we can

take R(k) = e P, where B > 0, and otherwise arbitrary, yielding

Ak) = Za (—ik)} = eP¥ Z( 1k)1’“”. (10)

=0 p=0
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Table 1. E; branch for the discrete states of P2 +iX?> +iaX.

EMM bounds: E\ < Ex < E & E\Y < E; < EY)

5596
o E](MRF) @
-5.0 (1.343 3409, £2.907 3602)
—45 (12992519, £2.3124924)
4.0 (1.248 6637, £1.761 7076)
-35 (12124399, £1.2609114)
-3.0 (1.225 8438, +£0.760 0296)
-25 (0.928 0136, 0)
2.0 (0.6209137, 0)
-15 (0.596 4936, 0)
~1.0 (0.699 9615, 0)
-0.5 (0.892 6699, 0)

0.0 (1.156 2673, 0)

0.5 (1.4798519, 0)

1.0 (1.856 1128, 0)

15 (2.2797563, 0)

2.0 (2.746 7434, 0)

2.5 (3.253 8767, 0)

3.0 (3.798 5559, 0)

35 (4.378 6140, 0)

4.0 (4.992 1974, 0)

45 (5.637 6822, 0)

5.0 (6.313 6428, 0)

1.343311% < Eg < 1.343354%,2.9073* < E; < 2.9075"
1.299242 < Eg < 1.299252,2.3124 < E; < 23126
1.248637 < Eg < 1.248666, 1.761688 < E; < 1.761742
1.212421 < Eg < 1.212448, 1.26088 < E; < 1.26094
1.225837 < Eg < 1.225864,0.76000 < E; < 0.760 04
0.927999 80" < E < 0.92800101°

0.62091347 < E < 0.620913 86
0.59649326 < E < 0.59649351
0.69995977 < E < 0.69995978
0.89266827 < E < 0.892668 49
1.15626695 < E < 1.156267 18
1.15626707198811324° < E <
1.47985179 < E < 1.47985206
1.85611065 < E < 1.85611108
2.27975185 < E <2.27975232
2.74673952 < E < 2.74674023
3.25387596 < E < 3.25387723
3.79855387 < E < 3.79855395
4.37859645 < E < 4.37859736
4.99215436 < E < 4.99215504
5.63763149 < E < 5.63763200
6.31359739 < E < 6.313606 65

1.156267071988 113 35¢

2 EMM analysis of Handy (2001b).

b EMM (P{3) = 30) analysis of Handy (2001a).
¢ EMM (P.S) = 60) analysis of Handy (2001a).
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Figure 1. Eigenvalues E versus parameter o.
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It is then clear that the a; will become linear in the missing moments, {1¢|0 < £ < mg}.

Specifically,

a;(E; o, n1, n2) = Z

(_,B)ql‘(/p

1p!
pizg=j 9P

(11)
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Table 2. E; branch for the discrete states of P2 +iX> +iaX.

« EMRD (o) EMM bounds: E\) < Ex < E) & E\Y < E; < EY)
-5.0 (1.343 3409, £2.907 3602) 1.343311% < Eg < 1.343354%,2.9073* < E; < 2.9075%
—4.5 (1.2992519, £2.3124924) 1.299243 < Eg < 1.299252,2.3124 < E; < 2.3126
—4.0 (1.248 6637, £1.7617076) 1.248637 < Ex < 1.248666, 1.761 688 < E; < 1.761742
-3.5 (1.2124399, £1.2609114) 1.212421 < Eg < 1.212448,1.26088 < E; < 1.26094
-3.0 (1.225 8438, +£0.760 0296) 1.225837 < Ex < 1.225864,0.76000 < E; < 0.760 04
-2.5 (1.685 9358, 0) 1.68597765° < E < 1.68598087°
-2.0 (2.2922626, 0) 229229055 < E < 2.29229333
-1.5 (2.742 5268, 0) 274252667 < E < 2.74253034
-1.0 (3.1797220, 0) 3.17971312 < E < 3.17971750
-0.5 (3.6320373, 0) 3.63207237 < E < 3.632077 67

0.0 (4.109 1279, 0) 4.10922704 < E < 4.10923558

4.109228752806° < E < 4.109 228752 812°

0.5 (4.6147402, 0) 4.61483391 < E < 4.61484633

1.0 (5.150 1688, 0) 5.15016059 < E < 5.150 17640

1.5 (5.715 4576, 0) 571538438 < E < 5.71541649

2.0 (63100192, 0) 6.31020527 < E < 631025282

2.5 (6.9332376, 0) 6.93405453 < E < 6.93412954

3.0 (7.585 0094, 0) 7.58627841 < E < 7.58638028

3.5 (8.265 6580, 0) 8.26613065 < E < 8.26633647

4.0 (8.974 5543, 0) 8.972726409 < E < 8.973328 364

4.5 (9.707 7326, 0) 9.70210565% < E < 9.707 894 36¢

5.0 (10.457 5130, 0) 10.452276 56¢ < E < 10.480 068 754

2 EMM analysis of Handy (2001b).

b EMM (P = 30) analysis of Handy (2001a).
¢ EMM (P3) = 50) analysis of Handy (2001a).
4 EMM (PSS < 30) analysis of Handy (2001a).

2.5

05}

0.0

. Im[E4] & Im[E ]

270 -265 -260 -255 -250 -245 -240 -235 -2.30
o

Figure 2. First and second eigenvalues versus « near the bifurcation.
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Table 3. E; branch for the discrete states of P2 +iX> +iaX.

« EMRD (@) EMM bounds: Ey’ < Ex < EY) & E\Y < E; < EY)

—7.5 (44103093, £3.266 4292) 4.408662% < Eg < 4.411426%,3.2645 < E; < 3.2700
—7.0 (4.3120349, £2.5634751) 4.310530 < Egp <4.313107,2.5618 < E; < 2.5674
—6.5  (4.205 6380, £1.903 9658) 4204520 < Eg < 4.206360, 1.9026 < E; < 1.9074
—6.0  (4.1343003, £1.2850914) 4.133864 < Ep < 4.134534,1.284 < +E; < 1.286
—-5.5 (4.1575135, £0.5313291) 4.155648 < Egp < 4.158235,0.5300 < E; < 0.5370

—=5.0 (3.4314015,0) 3.43136741° < E < 3.43139540°
—4.5  (3.3232446,0) 3.32323635 < E < 3.32325018
—4.0 (3.5087615, 0) 3.50876099 < E < 3.50877544
-3.5 (3.8776981, 0) 3.87768485 < E < 3.87770178
—3.0 (4.3334536, 0) 4.33342275 < E < 4.33344654
2.5 (4.8229806, 0) 4.82294849 < E < 4.822984 27
—2.0 (5.3313715,0) 533135537 < E < 5.33140311
—1.5 (5.8576148,0) 5.85759578 < E < 5.85766576
—-1.0  (6.4036752,0) 6.40362310 < E < 6.403728 94
—-0.5 (6.9714613,0) 6.97133951 < E < 6.97152763
0.0  (7.5622889, 0) 7.56215901 < E < 7.56242355
7.5622738549° < E < 7.562273 8551¢
0.5 (8.1770143,0) 8.17687201 < E < 8.177206 44
1.0 (8.8162241,0) 8.81569361 < E < 8.81644375
1.5 (9.4802011,0) 9.47913594 < E < 9.48044230
2.0 (10.1686764, 0) 10.166 83597 < E < 10.169075 46
2.5  (10.8807993,0) 10.87896180 < E < 10.88253390
3.0 (11.6159802,0) 11.61535000 < E < 11.620750 00
3.5 (12.3755952,0) 12.37090000¢ < E < 12.389 800 00¢
4.0 (13.1638132,0) 13.161 60000¢ < E < 13.204 800 00¢
4.5  (13.9842043,0) 13.86000000¢ < E < 14.040 000 00¢
5.0 (14.8298186,0) 14.72000000¢ < E < 15.080 000 004

2 EMM analysis of Handy (2001b).

b EMM (P,i,f,; = 30) analysis of Handy (2001a).
¢ EMM (P,;i; = 50) analysis of Handy (2001a).
4 EMM (PSS < 30) analysis of Handy (2001a).

or
= —B)IM, (E
a;(E; o, p1, h2) = Z < Z M) X e (12)
(=0 N p+2g=j q:-p-

for j > 0. Clearly, the maximum (Hamburger) moment order generated, Py,,x, determines the
maximum order of a; generated, 0 < j < Prax-

2.3. The MRF quantization prescription

It has been argued by Tymczak et al (1998a, b) that the convergent zeros of the coefficient
functions

a;(EY) =0 (13)
converge to the exact discrete state energies

lim EY) = Ephysical, (14)

j—o0
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Table 4. E4 branch for the discrete states of P2 +iX> +iaX.

« EMR (o) EMM bounds: E\ < Ex < EY) & E\Y < E; < EY)

—=7.5 (44103093, £3.266 4292) 4.408662% < Eg < 4.411426%,3.2645 < E; < 3.2700
—=7.0 (4.3120349, £2.5634751) 4.310530 < Eg < 4.313107,2.5618 < E; < 2.5674
—6.5  (4.205 6380, £1.903 9658) 4.204520 < Eg < 4.206360, 1.9026 < E; < 1.9074
—6.0  (4.1343003, £1.2850914) 4.133864 < Eg < 4.134534,1.284 < £E; < 1.286
—5.5  (4.1575135, £0.5313291) 4.155648 < Ep < 4.158235,0.5300 < E; < 0.5370

—5.0 (5.1678291, 0) 5.16784214Y < E < 5.167981 49
—45  (5.8041737,0) 5.80427900 < E < 5.804 396 60
—4.0 (6.3796826,0) 6.37969997 < E < 6.379 854 80
—3.5  (6.9490904, 0) 6.94880880 < E < 6.94915872
—3.0 (7.5252398,0) 7.52489539 < E < 7.52536568
—2.5  (8.1130836, 0) 8.113024 13 < E < 8.113687 68
—2.0 (8.7159047, 0) 8.71631657 < E < 8.71698842
—1.5  (9.3364444, 0) 9.33658547 < E < 9.337746 69
—1.0  (9.9763275,0) 9.97552896 < E < 9.97718784
—0.5  (10.6352870, 0) 10.63343056 < E < 10.636 605 76
0.0 (113120046, 0) 1131165120 < E < 11.315884 80
11314421818 < E < 11.314421 824¢
0.5 (12.0072541, 0) 12.01004000 < E < 12.016 760 00
1.0 (12.7264921, 0) 1272473600 < E < 12.742 88000
1.5 (13.4761039, 0) 13.47000000 < E < 13.515000 00
2.0 (14.2487931,0) 14.21000000 < E < 14.330 000 00
2.5 (15.0088412, 0) 14.96800000 < E < 15.220000 00
3.0  (15.8347839,0) 1571250000 < E < 16.125000 00
3.5 (164020563, 0) 16.40000000 < E < 17.000 000 00

2 EMM analysis of Handy (2001b).
b EMM (P{S) = 30) analysis of Handy (2001a).
¢ EMM (P.S) = 50) analysis of Handy (2001a).

Table 5. MRF complex eigenenergy estimates for Ppax = 100.

o E\ & E; E3; & E4

=75 (4.410 244 3440, £3.266 497 6653)
=7.0 (43119949171, £2.563 558 4867)
—6.5 (4.205 598 3584, £1.904 024 8046)
—6.0 (4.1342519473, £1.2851227083)
-5.5 (4.1574750374, £0.531 356 7960)

—=5.0  (1.343343 1987, £2.907 390 6160)
—4.5  (1.2992423296, £2.3125154783)
—4.0  (1.248656 7335, £1.7617193016)
—=3.5  (1.2124367296, £1.260 909 9725)
—3.0 (1.2258475767, £0.7600224714)

The above root equation must be adapted to the, 1+m, linear, missing moment structure of
the Hamiltonian in question. Thus, to any expansion order J, we impose that the last 1+ms, a;-
coefficients be zero (i.e. ay_p, = 0, for 0 < £ < my). Thisresults in a 1 +my = 3-dimensional,
determinantal equation for the energy:

Aj(E)=0 (15)
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Table 6. MRF real eigenenergy estimates for Ppax = 100.
o Ey E E3 Ey4
-5.0 3.4313832016 5.167 888 6857
—4.5 3.3232426191 5.804 3392228
—4.0 3.508 765607 3 6.379 805 2063
—-3.5 3.877693 0052 6.949 0523010
-3.0 4.3334398364 7.525191 9556
—2.5 0.928000342 158 1.685979 342731 4.822 975394 502 8.113377225
—2.0 0.620913574064 8 2.2922925019 5.3313834010 8.716 619963
—1.5 0.59649338409590  2.7425293939422 5.8576220019 9.337028976
—1.0  0.699959920798 6 3.179715776 3716 6.403 6451049 9.976 13238
—0.5 0.8926684335546 3.632074461 334 6.971403910342 10.63501626
0 1.156267071988 1 4.109 228 752 809 7.562273 8549 11.3144218
0.5 1.47985186079689 4.6148387273616 8.1770825316 12.014 824 35
1.0 1.856110766 056 6 5.150168 955614 8.8162451717 12.736497 38
1.5 2.2797520475930 5.715408 707 15 9.479 889209 56 13.4795632
2.0 2.7467399808560 6.310238361 05 10.167 9478499 14.244 0319
2.5 3.2538769263689 6.934 096 040 540 10.880225999 15.029831 15
3.0 3.798554700716 7.586310988 692 11.616445 659 15.836 8284
3.5 4.37859694562365 8.2661728690 12.376276 93 16.664 848 1
4.0 4.9921540825786 8.972968 4347 13.159359 16 17.513 684
4.5 5.637630445616 9.706 000 860 0 13.96531533 18.383 109
5.0 6.313632040368 1.046 459957615 14.7937618 19.2728823
where
@) J J
MEVE, B), M) (E, B). M{O(E, B)
_ ) ) )
Aj(E) =Det | My y(E, B), My [(E, B), M{,(E, B) (16)
) [@)) @)
MQ'()(Es ﬂ)? sz] (Ev ﬁ)’ Mz)z(Ev ﬂ)
and
—BYM (E)
) _ (=B)IM,.,
M JE = Y e (17)

Ip!
p+2q=J—1¢; q:p:

for 0 < €y, £, < mg = 2. In the tables, the Pp,x parameter corresponds to J = Ppyx.

3. Numerical implementation of MRF

The MREF analysis is implemented for 8 = 0.5. This value of the arbitrary parameter generates

the fastest converging results.

In figure 1 we plot the P7 symmetry breaking solutions (Im (E) # 0), and the P7T

symmetry invariant solutions (Im (E) = 0), for moderate « values at the limits of Delabaere
and Trinh’s asymptotic analysis. There are four branches depicted. In tables 1-4 we specify
some of the points plotted and, in addition, compare the MRF eigenenergy estimates with
the EMM bounds. The MREF results in these tables generally correspond to J < 50. The
EMM results were calculated to the same moment order, Pn,, < 50, for the complex
energies. In those cases where the MRF method predicts a purely real eigenenergy, we
used the faster EMM formalism corresponding to explicitly assuming that the underlying
solutions are P7 invariant (Handy (2001a)). For this case, the underlying problem is of
Stieltjes character, and a Stieltjes moment order of P& =30 corresponds to a Hamburger

moment order of 60 (i.e. Pr;f& = %). For this reason, in some cases the MRF estimates
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o Im[E4] and Im[E5]
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-2.618 -2616 -2.614 -2612 -2.610 -2.608 -2.606
o

Figure 3. Imaginary part of the first and second eigenvalues near the bifurcation.

(computed at J < 50) lie outside of the EMM bounds. However, for some of the EMM
bounds, numerical instability concerns required that Pélil < 30 (these were computed on a
standard, double precision, IBM platform). Such cases are relatively few in number, and are
explicitly identified. By working at a larger precision order, the corresponding bounds can be
improved.

Note that for « = 0 we quote the EMM bounds generated at higher Stieltjes moment order
(P,;f& < 60) given in the work by Handy (2001a). These bounds are very consistent with the
corresponding entries in tables 5 and 6.

In tables 5 and 6 we quote the MRF results for / = 100 (using CRAY double precision).
Only the stable digits are given (that is, tables 5 and 6 correspond to the (empirically determined)
stable digits within the MRF generated sequence, for 0 < J < 100).

The results are consistent: that is, the MRF results in tables 1-4, for the most part, lie
within the bounds. This is definitely the case for tables 5 and 6. Note that in the tables
we quote the imaginary parts of the energy as =+: this is because we cannot tell which P7T
invariant branch continues into the P7 breaking branch. For P7 invariant Hamiltonians,
complex energies come in conjugate pairs. Thus, if E is a solution, so too is E*.

In figures 2 and 3 we narrow in on the smaller of the two critical o values, o, ,, as shown
in figure 1. At these critical points, the energy goes from being real (P7 invariant solutions)
to complex (P7 breaking solutions). They are

Oer, = —2.611 809356 (18)
corresponding to E;, = 1.282773 53562, and

corresponding to E¢, = 4.181388093.
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4. Conclusion

We have confirmed the asymptotic analysis prediction of Delabaerre and Trinh (DT) on the
existence of symmetry breaking solutions for the H, Hamiltonian. Our methods enable the
precise analysis of the complex-real spectra, particularly for moderate « values at the limits of
their DT asymptotic validity. The results of both an eigenenergy estimation method (MRF) and
an eigenenergy bounding method (EMM) were presented. The algebraic simplicity and ease
of computational implementability of the MRF method recommend it highly for application to
similar problems. Through the use of readily available algebraic programming software, the
MREF approach can be extended to arbitrary precision (indeed, Tymczak ez al (1998b) were able
to generate the quartic anharmonic oscillator ground state energy to more than 171 decimal
places), making it a very powerful tool in these types of investigations. Recent (unpublished)
extensions of the method have yielded an accuracy of 500 decimal places.
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